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MIXTURE NEAR THE HYDRAULIC FRACTURE
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The problem of filtration of a gas-condensate mixture near the operating well with a hydraulic fracture has
been investigated. It was assumed that flow is three-dimensional in the matrix and two-dimensional on the
fracture. It has been shown that for steady-state flow, the problem is split into a purely physicochemical prob-
lem on phase transitions and a nonlinear partial boundary-value problem for the pressure field. An example
of numerical solution for the fracture with a prescribed conductivity field has been given.

Introduction. A formation hydrocarbon mixture for gas-condensate fields with the initial thermobaric condi-
tions is usually in a stable single-phase (gaseous) state. In exploiting the field, the gas is extracted, the formation pres-
sure decreases below the dew point, and a liquid phase, i.e., a condensate, appears. This phenomenon is called
retrograde condensation [1, 2]. The fallout of a condensate represents an unfavorable factor from the viewpoint of the
efficiency of exploitation of the field: first, the passage of higher hydrocarbons into the liquid phase usually leads to
their irreversible loss in the formation; second, the formation of the liquid phase diminishes the productivity of wells.
For predicting the consequences of retrograde condensation, it is of interest to analyze the exact solutions of the prob-
lem of filtration of a two-phase multicomponent mixture.

Below, we investigate the filtration of a gas-condensate mixture in the vicinity of a hydraulic fracture. Only
isothermal flows are considered; therefore, the temperature dependence will be disregarded. Furthermore, capillary ef-
fects are assumed negligible.

Formulation of the Problem. We will assume that an M component gas-condensate mixture fills a porous me-
dium in the spatial domain D with a piecewise smooth boundary ∂D. The indices a and b run through values of 1, 2,
and 3, corresponding to the ordinal numbers of the spatial coordinates xa which may not necessarily be Cartesian. The
subscripts i, j, and k run through values of 1, ..., and M, corresponding to the numbers of the mixture components. The
number of moles of the ith component of the mixture per unit volume is denoted by ni; the molar weight the ith com-
ponent is denoted by mi. A permeable fracture which is described by the two-dimensional smooth surface Γ passes
through the domain D. The indices α and β run through values of 1 and 2, corresponding to the ordinal numbers of
curvilinear coordinates ξα on the surface. In the notation adopted, the surface Γ is described by the equations xa =
Xa(ξα). Repeated indices of the coordinates or component numbers indicate sunmation. We will use the notation g =
det (gab), g∗ = det (gαβ∗), ∂a = ∂ ⁄ ∂xa, ∂α∗ = ∂ ⁄ ∂ξα, and Z,i = ∂Z ⁄ ∂ni; ∇a and ∇α∗ are the covariant derivatives in space
and on the surface Γ (Levi–Civita connectivity for the metrics gab and gαβ∗ respectively [3]). The metric gab (gαβ∗) can
be used for raising and lowering the indices of tensor fields in the domain D (on the surface Γ) [4].

Let nig = nig(t, xa), nic = nic(t, xa), and nig∗ = nig∗(t, ξ
α), nic∗ = nic∗(t, ξ

α). Accordingly let sg = sg(t, xa),
sc = sc(t, xa), (sg + sc = 1), and sg∗ = sg∗(t, ξ

α), sc∗ = sc∗(t, ξ
α), (sg∗ + sc∗ = 1).

For the mixture in question we have determined the free energy per unit volume f = f(ni) dependent on the
molar densities of the components ni. In applications, we compute the function f = f(ni) on the basis of semiempirical
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equations of state [1, 2]. The chemical potential of the mixture component κi = f,i and the hydrostatic pressure p =
niκi − f can be calculated using the free energy. We recall the Gibbs–Duhem relation

dp = nidκi , (1)

used below in a number of conclusions.
From the densities of the components, we compute their chemical potentials in the gas and the condensate

κig = κi(njg) and κic = κi(njc) and the pressures in the phases pg = p(nig) and pc = p(nic) in the matrix. We compute
the chemical potentials of the components in the gas and the condensate κig∗ = κi(njg∗) and κic∗ = κi(njc∗) and the pres-
sures in the phases pg∗ = p(nig∗) and pc∗ = p(nic∗) in the fracture. We will assume that the conditions of local thermo-
dynamic equilibrium between the phases are observed in the matrix and the fracture

κig = κic ,   pg = pc , (2)

κig∗ = κic∗ ,   pg∗ = pc∗ (3)

in the absence of capillary forces.
We assume that the porous medium is homogeneous and isotropic and the porosity factor m is pressure-inde-

pendent. Let the opening of the fracture be prescribed by a smooth field on the surface Γ: h∗ = h∗(ξ
α), and the me-

dium filling the fracture be characterized by its own constant porosity factor m∗. Then we can write the expression for
the total free energy of the mixture

F = m ∫ 
D


sg f (nig) + sc f (nic) + (sgnig + scnic) miϕ gdx

1
dx

2
dx

3
 (4)

+ m∗ ∫ 
Γ


sg∗ f (nig∗) + sc∗ f (nic∗) + (sg∗nig∗ + sc∗nic∗) miϕ h∗g∗dξ

1
dξ2

 ,

where ϕ = ϕ(xa). In filtration of the gas-condensate mixture, the conditions of local conservation of the components in
the matrix

m∂t (sgnig + scnic) + ∇aIi
a
 = 0 (5)

and in the fracture

m∗h∗∂t (sg∗nig∗ + sc∗nic∗) + ∇a∗Ii∗
a

 + [Ii
a
la] = 0 (6)

must be observed. In Eqs. (5) and (6), [Ii
ala] denotes the jump in the quantity computed as the difference between the

value from the side to which the vector la is directed and the value from the opposite side.
We assume that the boundary ∂Γ on the surface Γ represents a piecewise smooth curve. Let kα be a unit

inner normal to ∂Γ in the geometry of the surface Γ, ∂s be a measure at ∂Γ, γ1 = ∂Γ 3 ∂D, and γ2 = ∂Γ − γ1. Also,
we assume that the internal flows Ii∗

α vanish on the γ2 curve.
Using the dynamic equations (5) and (6), phase-equilibrium conditions (2) and (3), and the assumptions made,

we can compute the time derivative of the total free energy of the mixture (4):

dF
dt

 = Σ1 + Σ2 ,
(7)

Σ1 = ∫ 
∂D

KaIi
a
 (κi + miϕ) dA + ∫ 

γ1

kαIi∗
α

 (κi∗ + miϕ) ds ,
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Σ2 = ∫ 
D

Ii
a∂a (κi + miϕ) gdx

1
dx

2
dx

3
 + ∫ 
Γ


Ii∗
α∂α∗ (κi + miϕ) + (κi − κi∗) [Ii

a
la] g∗dξ

1
dξ2

 . (8)

The term Σ1 in expression (7) describes the change in the free energy due to the flow through the boundary of the
domain, and Σ2 describes the same but within the domain. For isothermal processes, an analog of the well-known con-
dition of nonnegativeness of the entropy production is the inequality

Σ2 ≤ 0 . (9)

For the flows, we take the ordinary assumption of the transfer of the components due to the phase flow in the pores

Ii
a
 = nigug

a
 + nicuc

a
 , (10)

Ii∗
α

 = h∗ 

nig∗ug∗

α
 + nic∗uc∗

α 
 .

(11)

Furthermore, we take the conditions of equality of the chemical potentials in the fracture and the matrix

κi∗ = κiΓ . (12)

Relations (12), in particular, yield that the densities of the components in the phases and the pressures coincide for the
mixture in the matrix and the fracture

nig∗ = nigΓ ,   nic∗ = nicΓ ,   p∗ = pΓ . (13)

At the same time, the saturations in the fracture and the matrix can generally differ: sg∗ ≠ sgΓ.
Using relations (1), (10), (11), and (13), we reduce expression (8) to the form

Σ2 = ∫ 
D


ug

a
 (∂ap + ρg∂aϕ) + uc

a
 (∂ap + ρc∂aϕ) gdx

1
dx

2
dx

3
 (14)

+ ∫ 
Γ


ug∗
α

 (∂α∗p + ρg∂α∗ϕ) + uc∗
α

 (∂α∗p + ρc∂α∗ϕ)

 g∗dξ

1
dξ2

 ,

where ρg = minig and ρc = minic. From (14), it is seen that the validity of Darcy’s law for the phases in the matrix
and the fracture is sufficient for the inequality (9) to hold:

ug
a
 = − kfgµg

−1
g

ab
 (∂bp + ρg∂bϕ) ,

(15)

uc
a
 = − kfcµc

−1
g

ab
 (∂bp + ρc∂bϕ) ,

(16)

ug∗
α

 = − k∗fg∗µg
−1

g
ab

 (∂β∗p + ρg∂β∗ϕ) ,
(17)

uc∗
α

 = − k∗fc∗µc
−1

g
ab

 (∂β∗p + ρc∂β∗ϕ) .
(18)

It is assumed that the relative phase permeabilities are prescribed as functions of saturation of the condensate. The ab-
solute permeability of the matrix k is coordinate-independent in accordance with the assumption of homogeneity of the
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porous medium. At the same time, the absolute permeability of the medium filling the fracture generally represents the
function on the surface Γ: k∗ = k∗(ξα).

Relations (2), (10), (11), (13), and (15)–(18) close the dynamic problem (5) and (6). There can be different
physically substantive formulations of the problem that differ in the geometry of the domain D and the surface Γ and
in boundary and initial conditions.

It is noteworthy that expressions (12) and (15)–(18) are not the only possible set of relations closing the prob-
lem and compatible with condition (9). Thus, e.g., there are complicated filtration models where the expressions for
filtration rates are dependent on the pressure gradient nonlinearly. The model proposed is the most simple from the
viewpoint of the analytical form of the governing relations. At the same time, it is consistent with numerous laboratory
and field observations.

We investigate the stationary solutions of the problem which correspond to steady-state filtration flows of a
gas-condensate mixture. It is well known that the problem of steady-state filtration of the gas-condensate mixture is in-
tegrated in quadratures in one-dimensional and plane cases [5–8]. The properties of exact solutions can be used for in-
terpretation of the stationary investigations of gas-condensate mixtures and prediction of the productivity of wells [9].
Below, it is shown that the well-known method of solution of one-dimensional and two-dimensional cases [5–8] is
generalized to the three-dimensional problem of filtration in the vicinity of a hydraulic fracture.

In the stationary case, the equations of conservation of the components (5) and (6) are reduced to the condi-
tions for the component fluxes

∇aIi
a
 = 0 , (19)

∇α∗Ii∗
α

 + [Ii
a
la] = 0 . (20)

We will assume that the surface Γ lies within the domain D. We assume that the two-dimensional boundary
∂D of the domain D falls into two piecewise smooth surfaces S1 and S2. A constant pressure pr corresponding to the
formation pressure is prescribed on the surface S1, and the condition of the flow through this surface is specified on
the surface S2. Since the surface Γ describes the hydraulic fracture, it must be geometrically connected with the oper-
ating well. In the formulation in question, the trajectory of the well-bore is described by a certain curve L on the sur-
face Γ. We assume that a constant pressure pw corresponding to the bottom-hole pressure is prescribed on the curve
L. Gravitational forces will be disregarded.

To analyze Eq. (19) it is convenient to select a coordinate system in space such that x1 = p and g1α = 0 and the
coordinates x2, x3 on the fracture are coincident with the intrinsic coordinates of the surface Γ: x2 = ξ1 and x3 = ξ2. We
can always determine such a system: it is sufficient to set the coordinates x2, x3 constant along the streamlines (i.e.,
along the lines of the pressure-gradient field). However, it should be borne in mind in computations that mapping of the
domain D onto the corresponding domain in coordinates p, ξα is two-sheeted, since the streamline can approach the
fracture on both sides for the same values of the parameters ξ1 and ξ2.

In the coordinate system selected, the fracture is described by the equation p = p∗(ξ
α), the boundary of the

domain ∂D is described by the equation p = pr, and the well L is described by the equation p = pw; the metric form
in space, by definition, appears as

ds
2
 = P

2
dp

2
 + σαβdξ

α
dξβ . (21)

The metric form on the fracture Γ is calculated from the formula gαβ∗ = P2∂α∗p∗∂β∗p∗ + σαβ.
Using the metric (21), we can rewrite the system of equations (19) in the selected coordinate system

∂
∂p

 




σ1 ⁄ 2

P
 k (Bgcig + Bccic)




 = 0 , (22)
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Bg = fgµg
−1

ng ,   Bc = fcµc
−1

nc ;   ng = ∑ 

i=1

M

nig ,   nc = ∑ 

i=1

M

nic ;   cig = nig
 ⁄ ng ,

cic = nic
 ⁄ nc ;   σ = det (σαβ) .

The system of equations (22) has M first integrals

σ1 ⁄ 2

P
 k (Bgcig + Bccic) = qi (ξ

α) . (23)

The right-hand sides in these equations represent the component flows arriving at the considered region D through the
boundary of the domain ∂D. In the case where the formation pressure pr is higher than or equal to the saturation pres-
sure pD, the condensate at the boundary ∂D is absent (Bc = 0), and the right-hand sides are clearly in proportion to
the composition of the gas, i.e., to the composition of the initial formation mixture ci0:

qi = ci0q (ξα) . (24)

If the formation pressure is lower than the saturation pressure pD and, consequently, there is a condensate at
the boundary ∂D, we will assume, as previously, that relations (24) hold, however the set of concentrations ci0 is in-
terpreted as the composition of the moving part of the formation mixture.

The total flux to the well is computed as the integral along the boundary ∂D of the flux density

Q = ∫ 
∂D

P
−1

k (Bg + Bc) σ
1 ⁄ 2dξ1

dξ2
 = ∫ 
∂D

q (ξα) dξ1
dξ2

 . (25)

Using (24) we reduce the set of integrals (23) to the form

Agcig + Accic = ci0 , (26)

Ag = σ1 ⁄ 2P
−1

q
−1

kBg ;   Ac = σ1 ⁄ 2P
−1

q
−1

kBc .

Expressions (26) have the form of balance relations in disintegration of the mixture of composition ci0 into the gas
and the condensate with compositions cig and cic respectively. Thus, the representation

Ag = 1 − W ,   Ac = W (27)

is true; in it, the function W = W(p) representing the mole fraction of the condensate in the mixture of average com-
position ci0 can be determined, irrespective of the filtration problem, either from experiment or by calculation using
one semiempirical equation of state [1, 2]. Analogously we can find all the characteristics of the gas and the conden-
sate, cig, cic, ng, nc, µg, and µc, as functions of the pressure p.

From relations (27), we derive an equality containing no metric coefficients:

fc
 ⁄ fg = Wµcng (1 − W)−1

 µg
−1

nc
−1

 . (28)

There is the known function of the pressure p on the right-hand side of equality (28) and the known function of the
saturation of the condensate in the matrix sc. Thus, we can interpret relation (28) as the equation determining the satu-
ration sc as a function of the pressure p.
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The above reasoning shows that we can obtain the dependences Bg = Bg(p) and Bc = Bc(p) even before solv-
ing the filtration problem proper, which must give the spatial distribution of the parameters of the mixture. Introducing
the notation Φ = Φ(p) + Bc(p), we easily derive, from (19), the elliptic equation for the matrix pressure

0 = k
−1

 ∑ 

i=1

M

∇aIi
a
 = g

ab∇a (Φ (p) ∇bp) . (29)

Now we investigate the system of equations (20). Using the results obtained on the component fluxes in the
matrix, we can transform this system as follows:

g∗
αβ

k
−1∇α∗ (k∗h∗ (Bg∗cig + Bc∗cic) ∇β∗p) = − Φci0 [l

a∂ap] , (30)

Bg∗ = fg∗µg
−1

ng ;   Bc∗ = fc∗µc
−1

nc .

The right-hand side of the system of equations (30) is in proportion to a constant ci0 vector; therefore, we can seek
such a solution of the problem in which the expression under the derivative on the right-hand side of the system, de-
pendent on the nomber. of chemical component, is also in proportion to the ci0 vector. Analogously to (26), we obtain
the balance relations for the concentrations

Ag∗cig + Ac∗cic = ci0 ,   Ag∗ = Φ∗
−1

Bg∗ ,   Ac∗ = Φ∗
−1

Bc∗ ,   Φ∗ = Bg∗ + Bc∗ .

Next, analogously to (27), the relations Ag∗ = 1 − W and Ac∗ = W are true. Consequently, there is an analog of
Eq. (28) for determination of the saturation of the condensate in the fracture sc∗ as a function of the pressure p:

fc∗
 ⁄ fg∗ = Wµcng (1 − W)−1

 µg
−1

nc
−1

 .

Thus, the quantity Φ∗ has been determined as a function of the pressure p. Summation of the equations of
system (30) over component numbers yields a differential relation for the pressure p, which has been determined on
the surface Γ. It is the internal boundary condition for problem (29):

g∗
αβ

k
−1∇α∗ (k∗h∗Φ∗∇β∗p) + Φ [l

a∂ap] = 0 . (31)

In accordance with what has been stated above, the boundary conditions

pS1
 = pr ,   λ

a∂apS2
 = 0 , (32)

pL = pw (33)

are imposed on the pressure p in addition to condition (31).
We note the important particular case where the fracture has very high conductivity ((k∗ ⁄ k) → +∞). The prob-

lem is reduced to Eq. (29), boundary conditions (32), and the following supplementary boundary condition replacing
conditions (31) and (33):

pΓ = pw . (34)

We give an example of numerical solution of the filtration problem for steady-state flow of a gas-condensate
mixture. We will use the composition of the gas-condensate mixture, which corresponds to the second object of the
Karachaganak oil and gas-condensate field (Republic of Kazakhstan). The composition of the mixture in mole fractions
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is as follows: cN2
 = 0.0103, cCO2

 = 0.0462, cH2S = 0.0432, cCH4
 = 0.6269, cC2H6

 = 0.0822, cC3H8
 = 0.0308, cnC4H10

 =
0.0062, ciC4H10

 = 0.0103, cC5
 = 0.0285, cC6

 = 0.0149, and cC7+
 = 0.1005.

We take the formation pressure pr = 535 bar and the bottom-hole pressure pw = 415 bar. The formation pres-
sure is close to a saturation pressure of 530 bar (1 bar = 105 Pa). The thermodynamic characteristics and phase tran-
sitions are calculated from the Peng–Robinson equation of state [1, 2]. The gas and condensate viscosities are taken to
be constant: µg = 2.3⋅10−5 Pa⋅sec and µc = 4.9⋅10−4 Pa⋅sec.

Numerical modeling is carried out for a rectangular plane fracture with a prescribed conductivity field (k∗h∗)
for fixed dimensions of the computational domain (see Fig. 1). The upper and lower sides of the computational do-
main are considered impermeable; a value of pressure equal to that of formation pressure is taken on the lateral sides.
The permeability of the matrix is set equal to 1 mD.

The parameters of the finite-difference grid used are as follows:
(1) the three-dimensional computational domain with dimensions 340.5 × 162.2 × 68.1 m is subdivided into

63 × 30 × 32 cells;
(2) the two-dimensional fracture with dimensions 329.7 × 63.9 is subdivided into 61 × 30 cells.

In calculations, we take the following dependences of the relative phase permeabilities on pressure:

fg = (sg − sg1)
a ⁄ (1 − sg1)

a
 ,   fc = (sc − sc1)

b ⁄ (1 − sc1)
b
 .

We use different relative phase permeabilities: a = 2, b = 3, sg1 = 0.08, and sc1 = 0.12 in the matrix and a = 2, b = 2,
sg1 = 0, and sc1 = 0 on the fracture. From the calculation results, the gas flow rate is 661,000 m3 ⁄ day.

Figures 2 and 3 give the distribution of the pressure and saturation of the condensate. An important feature
of the solution is the formation of a condensate bank near the fracture with a considerable pressure gradient in this
region.

Conclusions. It has been shown that the problem of filtration of a gas-condensate mixture in the vicinity of
the hydraulic fracture is reduced to a nonlinear elliptic equation with boundary conditions involving the nonlinear el-
liptic operator on the fracture (see (31)). Such an equation can generally be solved only by numerical methods. None-

Fig. 1. Geometry of the computational domain (a) and the conductivity of the
fracture (b).

Fig. 2. Fields of pressure (a) and saturation of the condensate (b) in the matrix.
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theless, the problem obtained for pressure is much more simple than the initial problem (19) and (20) containing the
unknown compositions of the phases and saturations. We emphasize that Eq. (29) and (31) have been written in an
invariant form independent of the coordinate systems used in space and on the surface Γ, although we considered a
wholly concrete coordinate system (see (21)) in deriving these equations.

The constructed model of filtration of a gas-condensate mixture in the vicinity of a hydraulic fracture makes
it possible to predict both the productivity of the well and the distribution of the mixture parameters in the matrix and
the fracture. Such prediction can be useful in simulating hydraulic fracturing.

This work was supported by Schlumberger Oilfield Services (RPO-123).

NOTATION

Ag, Ac, Ag∗, and Ac∗, auxiliary variables; Bg, Bc, Bg∗, and Bc∗, auxiliary variables, mole⋅sec ⁄ (m2⋅kg); ci0, con-
centration of the ith component in the formation mixture; cig and cic, concentrations of the ith component in the gas
and the condensate; D, spatial domain; ∂D, boundary of the domain D; ∂Γ, boundary of the surface Γ; ds, measure at
∂Γ, m; dA, surface element, m2; f, free energy of the mixture per unit volume, Pa; F, total free energy of the mixture,
J; fg and fc, coefficients of relative phase permeabilities of the gas and the condensate in the matrix; fg∗ and fc∗, coef-
ficients of relative phase permeabilities of the gas and the condensate in the fracture; g, metric-tensor determinant in
space; g∗, metric-tensor determinant in the surface; gab, covariant components of the metric tensor in space; gαβ∗, co-
variant components of the metric tensor on the surface Γ; h∗, fracture opening, m; Ii

a, flux of the ith component in the
matrix, mole ⁄ (sec⋅m2); Ii∗

α, flux of the ith component in the fracture, mole ⁄ (sec⋅m); k and k∗, coefficients of absolute
permeability of the matrix and the fracture, m2; Ka, unit inner normal to ∂D; kα, unit inner normal to ∂Γ; la, inner
normal to the surface Γ; L, trajectory of the well-bore; M, number of components in the mixture; m, porosity factor
in the matrix; m∗, porosity factor in the fracture; mi, molar weight of the ith component of the mixture, kg ⁄ mole; ng
and nc, molar densities of the gas and the condensate, mole ⁄ m3; ni, molar density of the ith component of the mix-
ture, mole ⁄ m3; mig and nic, densities of the components of the gas and the condensate in the matrix, mole ⁄ m3; nig∗

and nic∗, densities of the components of the gas and the condensate in the fracture, mole ⁄ m3; P, metric pressure coef-
ficient, m ⁄ Pa; p and p∗, hydrostatic pressures in the matrix and the fracture, Pa; pD, saturation pressure, Pa; pg and
pc, pressures of the gas and the condensate in the matrix, Pa; pg∗ and pc∗, pressures of the gas and the condensate in
the fracture, Pa; pr, formation pressure, Pa; pw, bottom-hole pressure, Pa; Q, total flux to the well, mole ⁄ sec; q, flow
rate of the mixture, mole ⁄ (m2⋅sec); qi, flow rate of the ith component of the mixture, mole ⁄ (m2⋅sec); sg and sc, satu-
rations of the gas and the condensate in the matrix; sg∗ and sc∗, saturations of the gas and the condensate in the frac-
ture; sg1 and sc1, mobility thresholds for the gas and the condensate; S1 and S2, auxiliary surfaces; t, time, sec; ug

a and
uc

a, rates of filtration of the gas and the condensate in the matrix, m ⁄ sec; ug∗
α  and uc∗

α , rates of filtration of the gas and
the condensate in the fracture, m ⁄ sec; W, mole fraction of the condensate in the mixture of average composition ci0; 
xa, spatial coordinates; γ1, intersection of the fracture surface and the boundary; γ2, part of the fracture boundary lo-
cated within the domain D; κi and κi∗, chemical potentials of the ith component of the mixture in the matrix and the
fracture, kg⋅m2 ⁄ (sec2⋅mole); κig and κic, chemical potentials in the matrix of the ith component of the gas and the

Fig. 3. Distribution of the: a) pressure and b) saturation of the condensate
fracture.
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condensate, kg⋅m2 ⁄ (sec2⋅mole); κig∗ and κic∗, chemical potentials in the fracture in the ith component of the gas and
the condensate, kg⋅m2 ⁄ (sec2⋅mole); λa, normal to the surface S2; µg and µc, shear viscosities of the gas and the con-
densate, Pa⋅sec; ξα, curvilinear coordinates on the two-dimensional surface; ρg and ρc, mass densities of the gas and
the condensate, kg ⁄ m3; σ, determinant of σαβ; σαβ, part of the metric tensor; Σ1 and Σ2, auxiliary variables, J ⁄ sec;
ϕ, gravitational potential, m2 ⁄ sec2; Φ and Φ∗, auxiliary functions. Subscripts and superscripts: a and b, for spatial co-
ordinates; i, j, and k, for the components of the mixture; α and β, for curvilinear coordinates; x, y, z, coordinate axes;
g, gas; c, condensate; f, fracture; r, computational domain (region); w, well.
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